Pathogenic T cell responses against aquaporin 4. Pohl M , Fischer MT , Mader S , Schanda K , Kitic M , Sharma R , Wimmer I , Misu T , Fujihara K , Reindl M , Lassmann H , Bradl M . Source Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Spitalgasse 4, 1090, Vienna, Austria.
Fazio R et al. – Neuromyelitis optica (NMO) is a rare demyelinating disease, affecting selectively the optic nerve and the spinal cord. It was previously considered to be a severe variant of multiple sclerosis (MS) due to the similar pathological features and its resemblance to optico–spinal, or Japanese, MS, typical of Asian populations.
Inflammatory lesions in the central nervous system of patients with neuromyelitis optica are characterized by infiltration of T cells and deposition of aquaporin-4-specific antibodies and complement on astrocytes at the glia limitans. Although the contribution of aquaporin-4-specific autoantibodies to the disease process has been recently elucidated, a potential role of aquaporin- 4-specific T cells in lesion formation is unresolved. To address this issue, we raised aquaporin-4-specific T cell lines in Lewis rats and characterized their pathogenic potential in the presence and absence of aquaporin-4-specific autoantibodies of neuromyelitis optica patients
Primary loss and dysfunction of astrocytes may trigger demyelination, as seen in neuromyelitis optica, an inflammatory disease of the central nervous system. In most patients affected by this disease, injury to astrocytes is initiated by the action of autoantibodies targeting aquaporin 4 (AQP-4), a water channel on astrocytes.